Friday, 12 April 2013

What is Python?

Python was conceived in the late 1980s and its implementation was started in December 1989[ by Guido van Rossum at CWI in the Netherlands as a successor to the ABC language(itself inspired by SETL )capable of exception handling and interfacing with the Amoeba operating system.
 
Python is an interpreted languages such as Java, JavaScript, Perl, Tcl, or Smalltalk, object-oriented, high-level programming language with dynamic semantics. Its high-level built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for Rapid Application Development, as well as for use as a scripting or glue language . 

Python's simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program maintenance. Python supports modules and packages, which encourages program modularity and code reuse. The Python interpreter and the extensive standard library are available in source or binary form without charge for all major platforms, and can be freely distributed.
Since there is no compilation step, the edit-test-debug cycle is incredibly fast. Debugging Python programs is easy: a bug or bad input will never cause a segmentation fault. Instead, when the interpreter discovers an error, it raises an exception. When you doesn't catch any exception then print variable and check on terminal.


Python runs on Windows, Linux/Unix, Mac OS X, and has been ported to the Java and .NET virtual machines.
Python is free to use, even for commercial products, because of its OSI-approved open source license.The current production versions are Python 2.7.4 and Python 3.3.1.

 

Comparing Python to Other Languages

Java

Python programs are generally expected to run slower than Java programs, but they also take much less time to develop. Python programs are typically 3-5 times shorter than equivalent Java programs. This difference can be attributed to Python's built-in high-level data types and its dynamic typing. For example, a Python programmer wastes no time declaring the types of arguments or variables, and Python's powerful polymorphic list and dictionary types,
 
Javascript

Python's "object-based" subset is roughly equivalent to JavaScript. Like JavaScript (and unlike Java), Python supports a programming style that uses simple functions and variables without engaging in class definitions. However, for JavaScript, that's all there is. Python, on the other hand, supports writing much larger programs and better code reuse through a true object-oriented programming style, where classes and inheritance play an important role.

Perl

Python and Perl come from a similar background (Unix scripting, which both have long outgrown), and sport many similar features, but have a different philosophy. Perl emphasizes support for common application-oriented tasks, e.g. by having built-in regular expressions, file scanning and report generating features. Python emphasizes support for common programming methodologies such as data structure design and object-oriented programming, and encourages programmers to write readable (and thus maintainable) code by providing an elegant but not overly cryptic notation. As a consequence, Python comes close to Perl but rarely beats it in its original application domain; however Python has an applicability well beyond Perl's niche.

C++

Almost everything said for Java also applies for C++, just more so: where Python code is typically 3-5 times shorter than equivalent Java code, it is often 5-10 times shorter than equivalent C++ code! Anecdotal evidence suggests that one Python programmer can finish in two months what two C++ programmers can't complete in a year. Python shines as a glue language, used to combine components written in C++.